Let G be a group and $a \in G$. Consider the set \{ $a^n \in G$: $n \in \mathbb{Z}$ \} of all integral powers of a. We designate this subset of G shortly by $\langle a \rangle$. It is not empty and is in fact a subgroup of G:

(i) if $a^m a^n \in \langle a \rangle$, then $a^m a^n = a^{m+n} \in \langle a \rangle$, as $m + n \in \mathbb{Z}$ when $m,n \in \mathbb{Z}$,

(ii) if $a^m \in \langle a \rangle$, then $(a^m)^{-1} = a^{-m} \in \langle a \rangle$, as $-m \in \mathbb{Z}$ when $m \in \mathbb{Z}$.

11.1 Definition: Let G be a group and $a \in G$. Then $\langle a \rangle = \{ a^n \in G: n \in \mathbb{Z} \}$ is called the cyclic subgroup of G generated by a. If it happens that $\langle a \rangle = G$, then G is called a cyclic group and a is called a generator of G.

Any cyclic group is abelian. Indeed, if G is a cyclic group, generated by a, then any two elements a^m, a^n ($m,n \in \mathbb{Z}$) of G commute:

$$a^m a^n = a^{m+n} = a^{n+m} = a^n a^m.$$

The converse is false. There are abelian groups which are not cyclic. For example, the group U of Example 9.4(h) is abelian but not cyclic since the cyclic subgroups generated by $1, 3, 5, 7$ are all proper subgroups of U.

11.2 Examples: (a) Consider the subgroup $\langle i \rangle$ of $\mathbb{C}\{0\}$ under multiplication. We have

$$i^0 = 1, \ i^1 = i, \ i^2 = -1, \ a^3 = -i$$

and other powers of i do not give rise to other complex numbers. To see this, let $n \in \mathbb{Z}$ and divide n by 4 to get $n = 4q + r$, $0 \leq r \leq 3$, $q,r \in \mathbb{Z}$. Then

$$i^n = i^{4q+r} = i^{4q}i^r = (i^4)^qi^r = 1^qi^r = i^r \in \{ 1, i, -1, -i \}.$$

Hence $\langle i \rangle = \{ 1, i, -1, -i \}$ is a cyclic group of order 4.

(b) In §9, Ex.4, the reader proved that $L = \{ 1, 2, 4, 5, 7, 8 \}$ is a group under multiplication (mod 9). Let us find the cyclic subgroup of L generated by 2. We have

$$\bar{2}^0 = \bar{1}, \ \bar{2}^1 = \bar{2}, \ \bar{2}^2 = \bar{4}, \ \bar{2}^3 = \bar{8}, \ \bar{2}^4 = \bar{7}, \ \bar{2}^5 = \bar{5},$$
\[L = \{ \overline{1,2,4,5,7,8} \} = \{ \overline{2^n} \in L: n = 0,1,2,3,4,5 \} \subseteq \{ \overline{2^n} \in L: n \in \mathbb{Z} \} = \langle \overline{2} \rangle, \]

thus \(L = \langle \overline{2} \rangle \). So \(L \) is a cyclic group and \(\overline{2} \) is a generator of \(L \). We see

\[\langle \overline{4} \rangle = \{ \overline{1,4,7} \}, \langle \overline{8} \rangle = \{ \overline{1,8} \}, \langle \overline{7} \rangle = \{ \overline{1,7,4} \} \]

are proper subgroups of \(L \). In particular, \(\overline{4,7,8} \) are not generators of \(L \).

On the other hand,

\[\langle \overline{5} \rangle = \{ \overline{1,5,7,8,4,2} \} = L \]

and \(\overline{5} \) is another generator of \(L \).

A cyclic group has many generators. The number of generators of a cyclic group will be determined later in this paragraph.

11.3 Definition: Let \(G \) be a group and \(a \in G \). The order \(|\langle a \rangle| \) of the cyclic subgroup of \(G \) generated by \(a \) is called the order of \(a \) and is denoted by \(o(a) \).

Thus \(o(a) \) is either a natural number or \(\infty \). Of course, if \(G \) is a finite group, then every element \(a \) of \(G \) will have finite order, in fact \(o(a) \big| |G| \) by Lagrange’s theorem. An infinite group, on the other hand, has in general, elements of finite order as well as elements of infinite order.

11.4 Lemma: Let \(G \) be a group and \(a \in G \). Then \(o(a) \) is finite if and only if there is a natural number \(n \) with \(a^n = 1 \). If this is the case, then \(o(a) \) is the smallest natural number \(s \) such that \(a^s = 1 \).

Proof: We put \(A = \{ n \in \mathbb{N}: a^n = 1 \} \). The claim is that \(o(a) \) is finite if and only if \(A \) is not empty. First we suppose \(o(a) \) is finite and prove that \(A \) is not empty. If \(o(a) \) is finite, then \(\langle a \rangle \) is a finite subgroup of \(G \) and the infinitely many elements

\[a^1, a^2, a^3, a^4, \ldots \]

of \(\langle a \rangle \) cannot be all distinct. So \(a^k = a^m \) for some \(k, m \in \mathbb{N} \) with \(k \neq m \). Assuming \(k < m \) without loss of generality, we obtain \(a^{m-k} = a^m a^{-k} = a^m(a^k)^{-1} = a^m(a^m)^{-1} = 1 \), so \(m - k \in A \) and \(A \neq \emptyset \).
Suppose now there are natural numbers n with $a^n = 1$, that is, suppose that $A \neq \emptyset$. We prove that $o(a)$ is finite, and is in fact the smallest natural number in A. To this end, let s be the smallest natural number in A. We show first $s \leq o(a)$ and then $o(a) \leq s$.

Consider the s elements $a^0, a^1, a^2, \ldots, a^{s-1}$ of $\langle a \rangle$. These are all distinct, for if $a^i = a^j$, $i \neq j$, $0 \leq i, j \leq s - 1$ say with $i < j$, then

$$a^{j-i} = 1, j - i \leq (s - 1) - 0, j - i \in \mathbb{N},$$

contradicting that s is the smallest natural number in A. So there are at least s distinct elements in $\langle a \rangle$. This gives $s \leq |\langle a \rangle| = o(a)$.

Next we show that there are at most s distinct elements in $\langle a \rangle$. If $a^h \in \langle a \rangle$, where $h \in \mathbb{Z}$, we divide h by s to get

$$h = qs + r, \quad q, r \in \mathbb{Z}, \quad 0 \leq r \leq s - 1,$$

$$a^h = a^{qs+r} = a^{sq}a^r = (a^s)^q a^r = 1^q a^r = a^r,$$

so

$$\langle a \rangle \subseteq \{a^0, a^1, a^2, \ldots, a^{s-1}\},$$

$$|\langle a \rangle| \leq |\{a^0, a^1, a^2, \ldots, a^{s-1}\}|,$$

$$o(a) \leq s$$

since the elements $a^0, a^1, a^2, \ldots, a^{s-1}$ are all distinct.

From $s \leq o(a)$ and $o(a) \leq s$, we get $o(a) = s$. \hfill \square

11.5 Lemma: Let G be a group and $a \in G$. Then $o(a) = \infty$ if and only if powers of a with distinct exponents are distinct, i.e., if and only if $a^m \neq a^k$ whenever $m \neq k$ ($m, k \in \mathbb{Z}$).

Proof: If $a^m \neq a^k$ whenever $m \neq k$, then the infinitely many elements

$$\ldots, a^{-3}, a^{-2}, a^{-1}, a^0, a^1, a^2, a^3, \ldots$$

of $\langle a \rangle$ are all distinct. So $\langle a \rangle$ is an infinite group and $o(a) = \infty$.

Suppose now the condition in the lemma does not hold. Then there are $m, k \in \mathbb{Z}$ with $a^m = a^k$, $m \neq k$. Assume $m > k$ without loss of generality. Then $m - k \in \mathbb{N}$ and $a^{m-k} = 1$. There is a natural number n, namely n
\(m - k \), with \(a^n = 1 \). Then \(o(a) \) is finite by Lemma 11.4. Hence \(o(a) = \infty \) implies that \(a^m \neq a^k \) whenever \(m \neq k \) \((m,k) \in \mathbb{Z}) \). \(\square \)

11.6 Lemma: Let \(G \) be a group and let \(a \in G \) be of finite order. Let \(n \in \mathbb{Z} \). Then \(a^n = 1 \) if and only if \(o(a)|n \).

Proof: We put \(s = o(a) \). If \(s|n \), then \(n = sq \) for some \(q \in \mathbb{Z} \), hence \(a^n = a^{sq} = (a^s)^q = 1^q = 1 \) since \(a^s = 1 \) by Lemma 11.4. Conversely, suppose \(a^n = 1 \). We divide \(n \) by \(s \) and get

\[
n = qs + r, \quad q,r \in \mathbb{Z}, \quad 0 \leq r \leq s - 1,
\]

\[
1 = a^n = a^{qs+r} = a^{sq}a^r = (a^s)^qa^r = 1^qa^r = a^r.
\]

If \(r \neq 0 \), then \(r \) would be a natural number smaller than \(s \) with \(a^r = 1 \), contradicting Lemma 11.4. So \(r = 0 \), \(n = qs \) and \(s|n \). \(\square \)

11.7 Lemma: If \(G \) is a finite group, then \(a^{|G|} = 1 \) for all \(a \in G \).

Proof: For any \(a \in G \), \(o(a) = |<a>| \) divides \(|G| \) by Lagrange's theorem. So \(a^{|G|} = 1 \) by Lemma 11.6. \(\square \)

Next we show that subgroups of cyclic groups are also cyclic.

11.8 Theorem: Let \(G \) be a cyclic group and let \(H \leq G \). Then \(H \) is cyclic. More informatively, let \(G = <a> \). Then \(\{1\} = <1> \) and if \(H \neq \{1\} \), then \(H = <a^t> \), where \(t \) is the smallest natural number in the set \(\{n \in \mathbb{N}: a^n \in H\} \).

Proof: The subgroup \(\{1\} \) of \(G = <a> \) is clearly the cyclic subgroup of \(G \) generated by 1, hence \(\{1\} = <1> \) is cyclic. Suppose now \(\{1\} \neq H \leq G \). We prove that \(H \) is cyclic, and in fact \(H = <a^t> \) as stated in the theorem. Since \(H \neq \{1\} \) by assumption, there is a nonidentity element in \(H \), say \(a^m \in H \), with \(m \in \mathbb{Z}\backslash\{0\} \). Then \(a^{-m} \in H \) since \(H \) is closed under the forming of inverses. So \(a^{-m}, a^m \in H \), \(m \neq 0 \). So there is a natural number \(n \) such that

109
$a^n \in H$, for instance $n = |m|$. Thus the set $\{ n \in \mathbb{N} : a^n \in H \}$ is not empty. From the natural numbers in this set, we choose the smallest one and call it t.

Now $a^t \in H$. Also $a^t = (a^t)^{-1} \in H$. Since H is closed under multiplication, we obtain $a^{kt} = (a^t)^k = a^t a^t \ldots a^t \in H$ and $a^{-kt} = (a^{-t})^k = a^t a^t \ldots a^t \in H$ for all $k \in \mathbb{N}$. Since $a^0t = 1 \in H$, we see $a^{mt} = a^{mt} \in H$ for all $m \in \mathbb{Z}$. Thus we have $\langle a^t \rangle = \{ a^{mt} \in G : m \in \mathbb{Z} \} \subseteq H$.

Assume next $b \in H$, where $b \in G = \langle a \rangle$. We write $b = a^n$ with a suitable n in \mathbb{Z} and divide n by t. This gives

\[
n = tq + r, \quad q, r \in \mathbb{Z}, \quad 0 \leq r \leq t - 1, \quad a^r = a^{n-tq} = a^n (a^{-t})^q \in H,
\]

since $a^n a^{-t} \in H$. If $r \neq 0$, then r would be a natural number smaller than t such that $a^r = 1$, contradicting the definition of t. So $r = 0$, $n = tq$, $t|n$ and $b = a^n = a^{tq} \in \langle a^t \rangle$. This holds for all $b \in H$. Hence $H \subseteq \langle a^t \rangle$.

From $\langle a^t \rangle \subseteq H$ and $H \subseteq \langle a^t \rangle$, we get $H = \langle a^t \rangle$, as claimed. \qed

11.9 Lemma: Let G be a group and $a \in G$. Let $k \in \mathbb{Z}$, $k \neq 0$.

1. If $o(a) = \infty$, then $o(a^k) = \infty$.
2. If $o(a) = n \in \mathbb{N}$, then $o(a^k) = n/(n,k)$.

Proof: (1) Suppose $o(a) = \infty$. If $o(a^k)$ were finite, say $o(a^k) = m \in \mathbb{N}$, then $(a^k)^m = 1$, so $a^{km} = 1 = a^0$, although km and 0 are distinct integers, contrary to Lemma 11.5. So $o(a) = \infty$ implies $o(a^k) = \infty$.

(2) Now let us suppose $o(a) = n \in \mathbb{N}$. Then $\langle a^k \rangle \subseteq \langle a \rangle$ and so $o(a^k)$ is finite. By Lemma 11.4,

\[
o(a^k) = \text{smallest natural number } s \text{ such that } (a^k)^s = 1
\] = smallest natural number s such that $a^{ks} = 1$

= smallest natural number s such that $n|ks$ (Lemma 11.6)

= smallest natural number s such that $\frac{n}{(n,k)} | \frac{k}{(n,k)} s$

110
= smallest natural number \(s \) such that \(\frac{n}{(n,k)} \mid s \) (Lemma 5.11 and Theorem 5.12)

From Lemma 11.9(1), we infer that any nontrivial subgroup of an infinite cyclic group is infinite. Using Lemma 11.9(2), we can find the number of generators of a finite cyclic group. Let \(G = \langle a \rangle \) be a cyclic group of order \(n \in \mathbb{N} \). Which elements are the generators of \(G \)? Any element \(a^k \) generates a subgroup \(\langle a^k \rangle \) of \(\langle a \rangle \) and \(a^k \) is a generator of \(\langle a \rangle \) if and only if \(\langle a^k \rangle = \langle a \rangle \). We know \(\langle a^k \rangle \leq \langle a \rangle \), so, since \(\langle a \rangle = n \) is finite, \(a^k \) is a generator of \(\langle a \rangle \) if and only if \(|\langle a^k \rangle| = |\langle a \rangle| \). Thus \(a^k \) is a generator of \(\langle a \rangle \) if and only if \(o(a^k) = o(a) \), that is, if and only if \(n = n/(n,k) \), and so if and only if \((n,k) = 1 \). There are \(n \) distinct elements \(a^0, a^1, a^2, \ldots, a^{n-1} \) in \(\langle a \rangle \), and among these,

\[
\{a^k: (n,k) = 1, 0 \leq k \leq n - 1\} = \{a^k: (n,k) = 1, 1 \leq k \leq n \}
\]

is the set of generators of \(\langle a \rangle \). Hence the number of generators of \(\langle a \rangle \) is the number of positive integers smaller than (or equal to) \(n \) and relatively prime to \(n \). This number is traditionally denoted by \(\varphi(n) \). For example

\[
\varphi(1) = 1, \quad \varphi(2) = 1, \quad \varphi(3) = 2, \quad \varphi(4) = 2, \quad \varphi(5) = 4, \\
\varphi(6) = 2, \quad \varphi(7) = 6, \quad \varphi(8) = 4, \quad \varphi(9) = 6, \quad \varphi(10) = 4.
\]

The function \(\varphi: \mathbb{N} \to \mathbb{N} \) is known as Euler's phi function or Euler's totient function (L. Euler, a Swiss mathematician (1707-1783)).

Lagrange's theorem asserts that \(m \mid |G| \) when there is a subgroup \(H \) of order \(|H| = m \) (provided \(G \) is a finite group). The converse of Lagrange's theorem is false: if \(G \) is a finite group and \(m \mid |G| \), then it is not necessarily true that \(G \) has a subgroup of order \(m \) (see §16, Ex.7). However, for cyclic groups, the converse of Lagrange's theorem is true.
11.10 Lemma: Let $G = \langle a \rangle$ be a cyclic group of order $|G| = n$. For any positive divisor m of n, there is a unique subgroup H of order $|H| = m$, namely $\langle a^{n/m} \rangle$.

Proof: $o(a) = n$ by hypothesis. We write $n = mk$. Consider the subgroup $\langle a^k \rangle$ of $\langle a \rangle$. We observe $|\langle a^k \rangle| = o(a^k) = n/(n,k) = mk/(mk,k) = mk/k = m$, so $\langle a^k \rangle$ is a subgroup of order m.

We now show that $\langle a^k \rangle$ is the unique subgroup of G of order m. Let L be a subgroup of order m. We want to prove $L = \langle a^k \rangle$. Since $|L| = |\langle a^k \rangle| = m$ is finite, it will suffice to prove that $L \leq \langle a^k \rangle$. This is certainly true if $L = \{1\}$, that is, if $m = 1$. When $m \neq 1$, we have, by Theorem 11.8, $L = \langle a^t \rangle$, where t is the smallest natural number such that $a^t \in L$. In order to show $\langle a^t \rangle = L \leq \langle a^k \rangle$, we need only prove $a^t \in \langle a^k \rangle$, i.e., we need only prove $k|t$. This is easy: since $o(a^t) = |\langle a^k \rangle| = |L| = m$, we get $(a^t)^m = 1$ by Lemma 11.6, so $a^{tm} = 1$, so $n|tm$ by Lemma 11.6 again, which gives $km|tm$, hence $k|t$.

Lemma 11.10 implies that a finite cyclic group G has, for any positive divisor k of $|G|$, a unique subgroup of index k. This reformulation of Lemma 11.10 extends immediately to infinite cyclic groups.

11.11 Lemma: Let $G = \langle a \rangle$ be a cyclic group of infinite order. For any $m \in \mathbb{N}$, there is a unique subgroup H of G of index $|G:H| = m$, namely $H = \langle a^m \rangle$. Any nontrivial subgroup of G has finite index in G.

Proof: We have $G = \langle a \rangle$, $o(a) = \infty$. The elements of G are the symbols a^k, where k runs through the set of integers. By Lemma 11.5, $a^k \not\equiv a^j$ for $k \neq j$. Two symbols are multiplied by adding the exponents: $a^k \cdot a^j = a^{k+j}$. Also, a^0 is the identity and $(a^k)^{-1}$ is the symbol a^{-k}. Essentially, we have the group of integers under addition, but the integers are written as exponents.

First we prove that a nontrivial subgroup of G has finite index in G. Let $L \leq G = \langle a \rangle$, $L \neq \{1\}$. From Theorem 11.8, we know $L = \langle a^t \rangle$, where t is the smallest natural number such that $a^t \in L$. Any element a^n of $G = \langle a \rangle$
can be written as \(a^{tq+r} \), with some uniquely determined integers \(q, r \), where \(0 \leq r \leq t - 1 \). Thus any element \(a^n \) of \(G \) belongs to one and only one of the subsets

\[\{ a^{tq}: q \in \mathbb{Z} \}, \{ a^{tq+1}: q \in \mathbb{Z} \}, \{ a^{tq+2}: q \in \mathbb{Z} \}, \ldots, \{ a^{tq+(t-1)}: q \in \mathbb{Z} \}, \]

which are just the right cosets

\[\langle a^t \rangle a^0, \quad \langle a^t \rangle a^1, \quad \langle a^t \rangle a^2, \quad \ldots, \quad \langle a^t \rangle a^{t-1} \]

\[La^0, \quad La^1, \quad La^2, \quad \ldots, \quad La^{t-1} \]

of \(L \). The uniqueness of \(q \) and \(r \) implies that these cosets are distinct. Alternatively, one can show that these cosets are distinct by noting that \(La^i = La^j \) (\(0 \leq i, j \leq t - 1 \)) implies, when \(i \neq j \), say when \(i < j \), that \(L = La^{i+d} \) and thus (Lemma 10.2(2)) \(a^i \in L \), where \(0 < j - i \leq t - 1 \), contrary to the definition of \(t \) as the smallest natural number such that \(a^t \in L \). So there are exactly \(t \) distinct right cosets of \(L \) in \(G \) and \(|G:L| = t \) is finite.

We proved in fact that \(|G:\langle a^t \rangle| = t \) when \(t \in \mathbb{N} \). Thus, for any \(m \in \mathbb{N} \), there is a subgroup of \(G \) of index \(m \), namely \(\langle a^m \rangle \). We proceed to show that \(\langle a^m \rangle \) is the unique subgroup of \(G \) of index \(m \). Assume \(K \subseteq G \) with \(|G:K| = m \in \mathbb{N} \). We are to show \(K = \langle a^m \rangle \). Now \(K = \langle a^k \rangle \), where \(k \) is the smallest natural number such that \(a^k \in K \) (as \(|G:K| \) is finite, \(K \neq \{1\} \)). So \(m = |G:K| = |G:\langle a^k \rangle| = k \) and \(a^m = a^k \), which yields \(K = \langle a^k \rangle = \langle a^m \rangle \). Therefore \(\langle a^m \rangle \) is the unique subgroup of \(G \) of index \(m \).

We learned the structure of cyclic groups quite well, but we had only a few examples. We have not seen any cyclic group of order 5 or 7. For all we know about cyclic groups up to now, it is feasible that there is no cyclic group of order 5 or 7. We show next that there is a cyclic group of any order. Incidentally, this shows that there are groups of all orders.

11.12 Theorem: There is a cyclic group of infinite order. Also, for any \(n \in \mathbb{N} \), there is a cyclic group of order \(n \).

Proof: We give examples of cyclic groups in additive notation. In this notation, \(\langle a \rangle \) is the group \(\{ na: n \in \mathbb{Z} \} \), the group operation being \(na + ma = (n + m)a \), the additive counterpart of the rule \(a^n a^m = a^{n+m} \).
\[\mathbf{Z} \text{ (under addition) is a cyclic group of infinite order as } \mathbf{Z} = \{ m1 : m \in \mathbf{Z} \} = \langle 1 \rangle \text{ is generated by } 1 \in \mathbf{Z}. \]

\[\mathbf{Z}_n \text{ (under addition) is a cyclic group of order } n \text{ as } \mathbf{Z}_n = \{ m\bar{1} : m \in \mathbf{Z} \} = \langle \bar{1} \rangle \text{ is generated by } \bar{1} \in \mathbf{Z}_n. \]

\[\square \]

11.13 **Theorem:** Let \(p \) be a prime number. If \(G \) is a group of order \(p \), then \(G \) is cyclic.

Proof: Since \(p \) is prime, \(|G| = p \neq 1 \) and so \(G \) does not consist of the identity element only. Let \(a \) be any element of \(G \) distinct from the identity. Then \(1 \neq \langle a \rangle \leq G \) and \(|\langle a \rangle| \) is a positive divisor of \(|G| = p \) by Lagrange's theorem. Since \(|\langle a \rangle| \neq 1 \), we have \(|\langle a \rangle| = p = |G| \). This forces \(G = \langle a \rangle \). Thus \(G \) is a cyclic group. (In fact, any nonidentity element of \(G \) is a generator of \(G \).) \(\square \)

Exercises

1. Let \(G \) be a group and let \(a \) be an element of finite order \(n \) in \(G \). Show that, for all \(m,k \in \mathbf{Z} \), the equality \(a^m = a^k \) holds if and only if \(m \equiv k \pmod{n} \).

2. Find all subgroups of a cyclic group of order 8, of a cyclic group of order 10, and of a cyclic group of order 12.

3. Let \(G \) be a group, \(a \in G \) and \(o(a) = 36 \). What are the orders of \(a^2, a^3, a^4, a^7, a^{12}, a^{15}, a^{17} \)?

4. Let \(G \) be a group and \(a \in G \). Let \(n,k \in \mathbb{N} \) and let \(m = [n,k] \) be the least common multiple of \(n \) and \(k \). Prove that \(\langle a^n \rangle \cap \langle a^k \rangle = \langle a^m \rangle \).

5. Let \(G \) be a group and \(a \in G \) with \(o(a) = n_1 n_2 \in \mathbb{N} \), where \(n_1, n_2 \) are relatively prime natural numbers. Show that there are uniquely determined elements \(a_1, a_2 \) of \(G \) such that

\[a_1 a_2 = a = a_2 a_1 \]
and \(o(a_1) = n_1, o(a_2) = n_2. \)

6. Let \(G \) be a group and \(a, b \in G \). Assume that \(o(a) \in \mathbb{N}, o(b) \in \mathbb{N} \) and that \(o(a), o(b) \) are relatively prime. Prove: if \(ab = ba \), then \(o(ab) = o(a)o(b) \). Prove also that \(o(ab) = o(a)o(b) \) is not necessarily true when the hypothesis \(ab = ba \) is omitted.

7. Show that, if \(p, n \in \mathbb{N} \) and \(p \) is prime, then \(\varphi(p^n) = p^n - p^{n-1} \).