§12
Group of Units Modulo n

Let n be a natural number and consider \mathbb{Z}_n. We defined two operations on this set, namely addition and multiplication (Lemma 6.3). With respect to addition, \mathbb{Z}_n forms a group. What about multiplication? With respect to multiplication, \mathbb{Z}_n is not a group unless $n = 1$. This can be easily seen from the fact that 0 has no multiplicative inverse in \mathbb{Z}_n (Lemma 6.4(12); note that $0 \neq 1$ when $n \neq 1$). However, as in Example 9.4(h), a suitable subset of \mathbb{Z}_n is a group under multiplication.

12.1 Lemma: Let $n \in \mathbb{N}$ and $a,b \in \mathbb{Z}$. If $\bar{a} = \bar{b}$ in \mathbb{Z}_n, then $(a,n) = (b,n)$.

Proof: If $\bar{a} = \bar{b}$ in \mathbb{Z}_n, then $a \equiv b \pmod{n}$, so $n|b-a$, so $nk = b - a$ for some $k \in \mathbb{Z}$. We put $d_1 = (a,n)$ and $d_2 = (b,n)$. We have $d_1|n$ and $d_1|a$, thus $d_1|nk + a$, thus $d_1|b$. From $d_1|n$ and $d_1|b$, we get $d_1|(b,n)$, so $d_1|d_2$. Likewise we obtain $d_2|d_1$. So $|d_1| = |d_2|$ by Lemma 5.2(12) and, since d_1,d_2 are positive, we have $d_1 = d_2$. \qed

The preceding lemma tells that the mapping $\mathbb{Z}_n \to \mathbb{N}$ is well defined. The claim of the lemma is not self-evident and requires proof. Compare it to the apparently similar but wrong assertion that $\bar{a} = \bar{b}$ implies $(a,n^2) = (b,n^2)$. By Lemma 12.1, the following definition is meaningful.

12.2 Definition: Let $n \in \mathbb{N}$ and $\bar{a} \in \mathbb{Z}_n$, where $a \in \mathbb{Z}$. If $(a,n) = 1$, then \bar{a} is called a unit in \mathbb{Z}_n. The set of all units in \mathbb{Z}_n will be denoted by \mathbb{Z}_n^\times.

The reader will observe that U in Example 9.4(h) is exactly \mathbb{Z}_8^\times. We see $\mathbb{Z}_7^\times = \{\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6}\}$. More generally, $\mathbb{Z}_p^\times = \{\bar{1},\bar{2},\ldots,\bar{p-1}\}$ for any prime number p. So $|\mathbb{Z}_p^\times| = p - 1$. When $n > 1$, \mathbb{Z}_n^\times consists of the residue classes of the numbers among $1,2,3,\ldots,n-1,n$ that are relatively prime to n. 115
By the definition of Euler's phi function, we conclude $|\mathbb{Z}_n^\times| = \varphi(n)$. So $\varphi(12) = 4$ and in fact $\mathbb{Z}_{12}^\times = \{1, 5, 7, 11\}$. Also, $\varphi(15) = 8$ and $\mathbb{Z}_{15}^\times = \{1, 2, 4, 7, 8, 11, 13, 14\}$.

12.3 Lemma: Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If $(a, n) = (b, n) = 1$, then $(ab, n) = 1$.

Proof: This follows from the fundamental theorem of arithmetic (Theorem 5.17), but we give another proof. We put $d = (ab, n)$ and assume, by way of contradiction, that $d > 1$. Then $p|d$ for some prime number p (Theorem 5.13). So

\[
\begin{align*}
p|ab & \quad \text{and} \quad p|n \\
p|a \text{ or } p|b & \quad \text{and} \quad p|n \quad \text{(Euclid's lemma)}
\end{align*}
\]

$p|a$ and $p|n$ or $p|b$ and $p|n$ or $p|(a, n)$

contrary to the hypothesis $(a, n) = 1 = (b, n)$. So $(ab, n) = d = 1$. \square

12.4 Theorem: For any $n \in \mathbb{N}$, \mathbb{Z}_n^\times is a group under multiplication.

Proof: (cf. Example 9.4(h).) We check the group axioms.

(i) Is \mathbb{Z}_n^\times closed under multiplication? Let $\overline{a}, \overline{b} \in \mathbb{Z}_n^\times$, so that a, b are integers with $(a, n) = 1 = (b, n)$. We ask whether $\overline{ab} \in \mathbb{Z}_n^\times$, i.e., which is equivalent to asking whether $(ab, n) = 1$. By Lemma 12.3, ab is indeed relatively prime to n and so \mathbb{Z}_n^\times is closed under multiplication.

(ii) Multiplication in \mathbb{Z}_n^\times is associative since it is in fact associative in \mathbb{Z}_n (Lemma 6.4(7)).

(iii) $\overline{1} \in \mathbb{Z}_n^\times$ as $(1, n) = 1$ and $\overline{a} \overline{1} = \overline{a1} = \overline{a}$ for all $\overline{a} \in \mathbb{Z}_n^\times$. Hence $\overline{1}$ is an identity element of \mathbb{Z}_n^\times.

(iv) Each element in \mathbb{Z}_n^\times has an inverse in \mathbb{Z}_n. This follows from Lemma 6.4(9). Let us recall its proof. If $\overline{a} \in \mathbb{Z}_n^\times$, with $a \in \mathbb{Z}$ and $(a, n) = 1$, then there are integers x, y such that $ax + ny = 1$. From this we
get $\overline{a} \overline{x} = \overline{1}$, so \overline{x} is an inverse of \overline{a}. Yes, but this is not enough. We must further show that $x \in \mathbb{Z}_n^\times$, or equivalently that $(x,n) = 1$. This follows from the equation $ax + ny = 1$, since $d = (x,n)$ implies $d | x$, $d | n$, so $d | ax + ny$, so $d | 1$, so $d = 1$.

Hence \mathbb{Z}_n^\times is a group under multiplication. \[\square \]

\mathbb{Z}_n^\times is a finite group of order $\varphi(n)$. Using Lemma 11.7, we obtain $\overline{a}^{\varphi(n)} = \overline{1}$ for all $\overline{a} \in \mathbb{Z}_n^\times$. Writing this in congruence notation, we get an important theorem of number theory due to L. Euler.

12.5 Theorem (Euler's theorem): Let $n \in \mathbb{N}$. For all integers that are relatively prime to n, we have

$$ a^{\varphi(n)} \equiv 1 \pmod{n}. $$

The case when n is a prime number had already been observed by Pierre de Fermat (1601-1665). The result is known as Fermat's theorem or as Fermat's little theorem.

12.6 Theorem (Fermat's theorem): If p is a positive prime number then

$$ a^{p-1} \equiv 1 \pmod{p} $$

for all integers a that are relatively prime to p (i.e., for all integers a such that $p \nmid a$). \[\square \]

Multiplying both sides of the congruence $a^{p-1} \equiv 1 \pmod{p}$ by a, we get $a^p \equiv a \pmod{p}$. The latter congruence is true also without the hypothesis $(a,p) = 1$, since both a^p and a are congruent to 0 (\pmod{p}) when $(a,p) \neq 1$. This is also known as Fermat's (little) theorem.

12.7 Theorem (Fermat's theorem): If p is a prime number, then
\[a^p \equiv a \pmod{p} \]

for all integers \(a \).

\[\square \]

Exercises

1. Prove that \(\mathbb{Z}_n^* \) is an abelian group under multiplication.

2. Construct the multiplication tables of \(\mathbb{Z}_n^* \) for \(n = 2, 4, 6, 10, 12 \).

3. What are the orders of \(2 \) in \(\mathbb{Z}_3^* \), \(\overline{2} \) in \(\mathbb{Z}_5^* \), \(\overline{3} \) in \(\mathbb{Z}_7^* \), \(\overline{2} \) in \(\mathbb{Z}_{11}^* \), \(\overline{2} \) in \(\mathbb{Z}_{13}^* \), \(\overline{3} \) in \(\mathbb{Z}_{17}^* \), \(\overline{2} \) in \(\mathbb{Z}_{19}^* \), \(\overline{5} \) in \(\mathbb{Z}_{23}^* \)? What do you guess?

4. Show that \(\mathbb{Z}_3^* \), \(\mathbb{Z}_3^{\times} \), \(\mathbb{Z}_3^{\times} \), \(\mathbb{Z}_3^{\times} \) are cyclic.

5. Assume \(p \) is prime, \(\mathbb{Z}_p^* \) is cyclic, and \(m \in \mathbb{N}, m \geq 2 \). Prove that \(\mathbb{Z}_p^{\times m} \) is cyclic by establishing that, if \(a \) in \(\mathbb{Z}_p^* \) is a generator of \(\mathbb{Z}_p^* \), then either \(a \) or \(a+p \) in \(\mathbb{Z}_p^{\times m} \) is a generator of \(\mathbb{Z}_p^{\times m} \).

6. Find the order of \(\overline{5} \) in \(\mathbb{Z}_8^* \), in \(\mathbb{Z}_16^* \), in \(\mathbb{Z}_{32}^* \), in \(\mathbb{Z}_{64}^* \).

7. Prove or disprove: if \(a \in \mathbb{Z} \) and \(a \equiv 5 \pmod{8} \), then the order of \(\overline{a} \) in \(\mathbb{Z}_{2^m}^* \) is \(2^{m-2} \) for all \(m \geq 3 \).

8. Show that \(\mathbb{Z}_{pq}^* \) is not cyclic if \(p \) and \(q \) are positive odd prime numbers. (Hint: What is \(\phi(pq) \) and what is \(a^{(p-1)(q-1)/2} \) congruent to \(\pmod{pq} \) if \(a \) is an integer relatively prime to \(pq \)?)