This paragraph is devoted to some very important theorems of group theory.

At this stage, it will be useful to introduce Hasse diagrams. A Hasse diagram is a convenient means to visualise inclusions holding between subgroups of a group. Subgroups are represented by points. Two points (subgroups) are joined by a line segment if and only if the lower subgroup is contained in the upper one. The line segments may be vertical or slante. The line segments may be thought of as factor groups when the lower subgroup is normal in the upper one. The Hasse diagrams of S_3, C_8 and C_{12} are depicted below.

$H = \{1, (12)\}, J = \{1, (13)\}, K = \{1, (23)\}$.

21.1 Theorem: Let $\phi: G \to G_1$ be a group homomorphism from G onto G_1. Then there is a one-to-one correspondence between the set of all subgroups of G that contain $\text{Ker } \phi$ and the set of all subgroups of G_1. This correspondence preserves inclusion. The normal subgroups of G that contain $\text{Ker } \phi$ correspond to normal subgroups of G_1, and conversely. The factor groups by corresponding normal subgroups are isomorphic.
In more detail and more precise language, the claim is the following.

(1) For every \(H \leq G \) with \(\text{Ker} \, \varphi \leqslant H \), there is associated a unique subgroup of \(G_1 \), which will be denoted by \(H_1 \).
(2) If \(\text{Ker} \, \varphi \leqslant H \leqslant J \leqslant G \), then \(H_1 \leqslant J_1 \).
(3) If \(\text{Ker} \, \varphi \leqslant H \leqslant G \), \(\text{Ker} \, \varphi \leqslant J \leqslant G \) and \(H_1 \leqslant J_1 \), then \(H \leqslant J \).
(4) If \(\text{Ker} \, \varphi \leqslant H \leqslant G \), \(\text{Ker} \, \varphi \leqslant J \leqslant G \) and \(H_1 = J_1 \), then \(H = J \).
(5) If \(S \) is any subgroup of \(G_1 \), then there is an \(H \leqslant G \) such that \(\text{Ker} \, \varphi \leqslant H \) and \(H_1 = S \).
(6) For \(\text{Ker} \, \varphi \leqslant H \leqslant G \), there holds \(H \trianglelefteq G \) if and only if \(H_1 \trianglelefteq G_1 \).
(7) If \(\text{Ker} \, \varphi \leqslant H \trianglelefteq G \) and \(H_1 \trianglelefteq G_1 \), then \(G/H \cong G_1/H_1 \).

The situation is described in the accompanying diagrams.

\[
\begin{array}{ccc}
G & G_1 & G_1/H_1 \\
J & J_1 & \\
H & H_1 & H_1 \cong 1 \\
\text{Ker} \, \varphi & 1 & \text{Ker} \, \varphi \cong 1 \\
1 & 1 & \\
\end{array}
\]

Proof: (1) For each \(H \leq G \) with \(\text{Ker} \, \varphi \leq H \), we are to find a subgroup of \(G_1 \). How can we find it? Well, the subgroup we are looking for will be first of all a subset of \(G_1 \). How can we associate with \(H \) a subset of \(G_1 \)? At our disposal, we have only one means of transportation from \(G \) to \(G_1 \), namely the mapping \(\varphi \). The only thing we can do, then, is form the set of images of the elements of \(H \) under \(\varphi \). Hence we put

\[
H_1 := \{ h \varphi \in G_1 : h \in H \}.
\]

We now prove \(H_1 \leq G_1 \). We can do it by the subgroup criterion, but we prefer to use Theorem 20.6, which states that the image of a homomorphism is a subgroup of its range. We note that the restriction of \(\varphi \) to \(H \) is a homomorphism (Example 20.2(g)) and

\[
H_1 = \{ h \varphi \in G_1 : h \in H \} = \{ h \varphi_H \in G_1 : h \in H \} = \text{Im} \varphi_H
\]
by definition. Theorem 20.6 gives now \(\text{Im } \varphi_H \subseteq G_1 \), hence \(H_1 \subseteq G_1 \). The description \(H_1 = \text{Im } \varphi_H \) will be useful.

(2) Suppose \(\text{Ker } \varphi \subseteq H \subseteq J \subseteq G \). Under this assumption, we prove \(H_1 \subseteq J_1 \). This is easy: for any \(h \in H \), we have \(h \in J \), so \(h\varphi \in \text{Im } \varphi_J = J_1 \). Since \(h\varphi \in J_1 \) for all \(h\varphi \in H_1 \), we get \(H_1 \subseteq J_1 \).

(3) Suppose \(\text{Ker } \varphi \subseteq H \subseteq G \), \(\text{Ker } \varphi \subseteq J \subseteq G \) and \(H_1 \subseteq J_1 \). We want to prove \(H \subseteq J \). Now \(H_1 \subseteq J_1 \) means \(\text{Im } \varphi_H \subseteq \text{Im } \varphi_J \). Then, for every \(h \in H \), we have \(h\varphi \in \text{Im } \varphi_J \):

\[
\text{for every } h \in H, \text{ there is a } j \in J \text{ such that } h\varphi = j\varphi.
\]

We obtain, when \(h,j \) are as above

\[
1 = h\varphi(j\varphi)^{-1} = h\varphi j^{-1}\varphi = (hj^{-1})\varphi,
\]

\[
hj^{-1} \in \text{Ker } \varphi \subseteq J
\]

\[
h \in Jj = J.
\]

Thus \(h \in J \) for all \(h \in H \). Therefore \(H \subseteq J \).

(4) This is immediate from (3). If \(H_1 = J_1 \), we have \(H_1 \subseteq J_1 \) and \(J_1 \subseteq H_1 \), so \(H \subseteq J \) and \(J \subseteq H \) by (3), hence \(H = J \). (This shows that the correspondence \(H \rightarrow H_1 \) is one-to-one.)

(5) For any \(S \subseteq G_1 \), we are to find an \(H \subseteq G \) such that \(\text{Ker } \varphi \subseteq H \) and \(H_1 = S \). What can \(H \) be? As in part (1), there is only one thing we can do: take the preimages of the elements in \(S \). Hence we put

\[
H = \{ a \in G : a\varphi \in S \}.
\]

Thus \(a \in H \) means \(a\varphi \in S \). We show that \(H \subseteq G \), that \(\text{Ker } \varphi \subseteq H \) and that \(H_1 = S \).

First \(H \subseteq G \). From \(1_G\varphi = 1_{G_1} \in S \) (Lemma 20.3(1)), we get \(1 \in H \). So \(H \neq \emptyset \). We apply the subgroup criterion.

(i) If \(a,b \in H \), then \(a\varphi, b\varphi \in S \), so \(a\varphi b\varphi \in S \), so \((ab)\varphi \in S \), so \(ab \in H \). Thus \(H \) is closed under multiplication.

(ii) If \(a \in H \), then \(a\varphi \in S \), then \((a\varphi)^{-1} \in S \), then \((a^{-1})\varphi \in S \), then \(a^{-1} \in H \). Thus \(H \) is closed under the forming of inverses.

224
Thus H is a subgroup of G.

We prove next that H contains $\text{Ker } \varphi$. This is trivial. If $a \in \text{Ker } \varphi$, then $a\varphi = 1$, so $a\varphi \in S$, so $a \in H$. Hence $\text{Ker } \varphi \subseteq H$.

It remains to prove $H_1 = S$. We have

$$H_1 = \text{Im } \varphi_H = \{ h\varphi \in G_1; h \in H \} = \{ h\varphi \in G_1; h\varphi \in S \} = S$$

as claimed.

This completes the proof of (5). (Part (5) shows that the correspondence $H \to H_1$ is onto.)

(6) First we assume $H \trianglelefteq G$ and show that $H_1 \trianglelefteq G_1$.

We are to show that $x^{-1}h_1x \in H_1$ for all $x \in G_1$ and for all $h_1 \in H_1$ (Lemma 18.2(1)). If $x \in G_1$ and $h_1 \in H_1$, then there are $a \in G$ with $a\varphi = x$ and $h \in H$ with $h\varphi = h_1$. This is so because φ is onto G_1 and H_1 is defined as $\text{Im } \varphi_H$. Then we are to show $(a\varphi)^{-1}(h\varphi)(a\varphi) \in H_1$. This is equivalent to $(a^{-1}ha)\varphi \in H_1$. Since $H \trianglelefteq G$, we know $a^{-1}ha \in H$, so $(a^{-1}ha)\varphi \in \text{Im } \varphi_H = H_1$. This proves $H_1 \trianglelefteq G_1$.

We assume now $H_1 \trianglelefteq G_1$ and prove $H \trianglelefteq G$. We can give an argument similar to the one above, but we prefer to use the fact that normal subgroups and kernels coincide. Our method will be used in the proof of part (7) as well.

The assumption is $H_1 \trianglelefteq G_1$. By Theorem 20.12, $H_1 = \text{Ker } \nu'$, where

$$\nu': G_1 \to G_1/H_1$$

is the natural homomorphism. We get then the homomorphism

$$\varphi\nu': G \to G_1/H_1 \quad \text{(Theorem 20.4)}:$$

$$G \xrightarrow{\varphi\nu'} G_1 \xrightarrow{\nu'} G_1/H_1.$$ \hspace{1cm} (i)

We have $\text{Ker } \varphi\nu' = \{ a \in G; a(\varphi\nu') = H_1 \}$

$$= \{ a \in G; a\varphi \in \text{Ker } \nu' \}$$

$$= \{ a \in G; a\varphi \in H \}$$

So $(\text{Ker } \varphi\nu')_1 = \text{Im } \varphi_{\text{Ker } \varphi\nu'} = \{ a\varphi \in G_1; a \in \text{Ker } \varphi\nu' \} = \{ a\varphi \in G_1; a\varphi \in H \} = H_1$

and we obtain

$$\text{Ker } \varphi\nu' = H$$ \hspace{1cm} (ii)

by part (4). Theorem 20.6 gives $H \trianglelefteq G$, as was to be proved.
(7) We saw that any one of \(H \trianglelefteq G \) and \(H_1 \trianglelefteq G_1 \) implies the other. Assume that one, and hence both of them are true. Then we have the homomorphism \(\varphi \). From Theorem 20.16, we obtain

\[
G/\ker \varphi \cong \text{Im } \varphi.
\]

We know \(\ker \varphi = H \) by (ii). As for the image, since \(\varphi \) is onto \(G_1 \) by hypothesis and \(\psi \) is onto \(G_1/\varphi \) by Theorem 20.12, the composition \(\varphi \) is onto by Theorem 3.11(1). Hence \(\text{Im } \varphi = G_1/\varphi \) and (iii) becomes

\[
G/H \cong G_1/\varphi.
\]

The proof is complete. \(\square \)

An important special case of Theorem 21.1 is the case of a natural homomorphism, recorded in the next theorem. It gives a complete description of the subgroups of a factor group. The last part of the theorem is known as the factor of a factor theorem.

21.2 Theorem: Let \(N \trianglelefteq G \). The subgroups of \(G/N \) are the factor groups \(S/N \), where \(S \) runs through the subgroups of \(G \) satisfying \(N \trianglelefteq S \). More precisely, for each subgroup \(X \) of \(G/N \), there is a unique subgroup \(S \) of \(G \) satisfying \(N \trianglelefteq S \) such that \(X = G/N \). When \(X_1 \) and \(X_2 \) are subgroups of \(G/N \), say \(X_1 = S_1/N \) and \(X_2 = S_2/N \), where \(N \trianglelefteq S_1 \trianglelefteq G \) and \(N \trianglelefteq S_2 \trianglelefteq G \), then \(X_1 \trianglelefteq X_2 \) if and only if \(S_1 \trianglelefteq S_2 \). Furthermore, \(S/N \trianglelefteq G/N \) if and only if \(S \trianglelefteq G \). In this case, there holds

\[
G/N \not\cong S/N \cong G/S.
\]

Proof: Since \(N \trianglelefteq G \), we can build the factor group \(G/N \). The natural homomorphism \(\psi: G \to G/N \) is onto by Theorem 20.12. We can therefore apply Theorem 21.1.

Theorem 21.1 states that any subgroup of \(G/N \) is of the form \(\text{Im } \psi_S \) for some \(S \trianglelefteq G \) with \(\ker \psi \trianglelefteq S \) (here \(\psi_S \) is the restriction of \(\psi \) to \(S \)). Now

\[
\text{Im } \psi_S = \{ sv \in G/N : s \in S \}
\]

\[
= \{Ns \in G/N : s \in S \} = S/N
\]
and $\text{Ker } \gamma = N$ by Theorem 20.12 (notice that S/N is meaningful, for $N \unlhd G$ and $N \triangleleft S$ imply $N \triangleleft S$; cf. Example 18.5(i)). Thus the subgroups of G/N are given by S/N, where $N \triangleleft S \triangleleft G$. By Theorem 21.1(2),(3),(4), $S_1/N \leq S_2/N$ if and only if $S_1 \leq S_2$ and $S_1/N \neq S_2/N$ whenever $S_1 \neq S_2$. Finally, $S_1/N \triangleleft G/N$ if and only if $S \triangleleft G$ by Theorem 21.1(6) and in this case $G/N \not\cong S/N$ by Theorem 21.1(7). This completes the proof.

\[
\begin{array}{ccc}
G & G/N & G/N \not\cong S/N \\
S & S/N & 1 \\
N & 1 \\
1 & \\
\end{array}
\]

As an application of Theorem 21.2, we classify the factor groups of cyclic groups. We treat infinite and finite cyclic groups separately.

Any infinite cyclic group is isomorphic to \mathbb{Z} under addition (Example 20.17(a)), so we need find the factor groups of \mathbb{Z}. As \mathbb{Z} is abelian, any subgroup of \mathbb{Z} is normal in \mathbb{Z} (Example 18.5(b)) and we can build factor groups of \mathbb{Z} by any subgroup of \mathbb{Z}. The subgroups of \mathbb{Z} are 0 (see Example 18.5(a)) and $n\mathbb{Z}$, where $n \in \mathbb{N}$ (Theorem 11.8). For each $n \in \mathbb{N}$, the subgroup $n\mathbb{Z}$ is the unique subgroup of index n (Lemma 11.11). The factor group $\mathbb{Z}/0$ is isomorphic to \mathbb{Z} (Example 20.10(c)). The factor groups $\mathbb{Z}/n\mathbb{Z}$ are known to be cyclic of order n (Example 20.17(a)). So all factor groups of \mathbb{Z} are cyclic (cf. Lemma 18.9(3)). For each $m \in \mathbb{N} \cup \{\infty\}$, there is a unique factor group of order m of \mathbb{Z}, namely $\mathbb{Z}/m\mathbb{Z}$ if $m \in \mathbb{N}$ and $\mathbb{Z}/0 \cong \mathbb{Z}$ if $m = \infty$.

Now let $C_n = \langle a \rangle$ be a finite cyclic group of order $n \in \mathbb{N}$. As C_n is abelian, we can build factor groups of C_n by any subgroup of C_n. We know that $C_n \cong \mathbb{Z}/n\mathbb{Z}$ from Example 20.17(a). The subgroups of $\mathbb{Z}/n\mathbb{Z}$ are described in Theorem 21.2: any subgroup of $\mathbb{Z}/n\mathbb{Z}$ is of the form $M/n\mathbb{Z}$, where $n\mathbb{Z} \leq M \leq \mathbb{Z}$. Now $M \leq \mathbb{Z}$ means $M = m\mathbb{Z}$ for some $m \in \mathbb{N}$ or $M = 0$ (Theorem 11.8) and the condition $n\mathbb{Z} \leq M$ excludes $M = 0$. Hence $M = m\mathbb{Z}$ for some $m \in \mathbb{N}$, where furthermore $m \mid n$, because $n\mathbb{Z} \leq m\mathbb{Z}$. So the sub-
groups of $\mathbb{Z}/n\mathbb{Z}$ are given by $m\mathbb{Z}/n\mathbb{Z}$, where m runs through all positive divisors of n. For the factor group, we know

$$\mathbb{Z}/n\mathbb{Z}/m\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z}$$

from Theorem 21.2. So all factor groups of $\mathbb{Z}/n\mathbb{Z}$ and of C_n are cyclic (cf. Lemma 18.9(3)). For each positive divisor m of n, there is a unique factor group of order m of $C_n = \langle a \rangle$, namely $\langle a \rangle/\langle a^m \rangle$, where $\langle a^m \rangle$ is the unique subgroup of order n/m of C_n (Lemma 11.10).

$$
\begin{array}{c|c|c|c}
C_n & \mathbb{Z}/n\mathbb{Z} & \mathbb{Z} & \mathbb{Z}/n\mathbb{Z}/m\mathbb{Z}/n\mathbb{Z} \\
\langle a^m \rangle & m\mathbb{Z}/n & m\mathbb{Z} & 1 \\
1 & 1 & n\mathbb{Z} & 1
\end{array}
$$

We end this paragraph with another important theorem of group theory.

21.3 Theorem: Let $H \leq G$ and $K \leq G$. Then $H \cap K \trianglelefteq K$ and

$$K/H \cap K \cong HK/H. \quad (*)$$

Proof: Since $H \leq G$, there is a group G/H and a homomorphism $\nu: G \to G/H$

Let ν_K be the restriction of ν to K. This ν_K is a homomorphism (Example 20.2(g)). Hence $K/Ker \nu_K \cong Im \nu_K$ by Theorem 20.16. Here

$$Ker \nu_K = \{ k \in K : k \nu = 1 \}$$

$$= \{ k \in K : k \in Ker \nu \}$$

$$= K \cap Ker \nu$$

$$= K \cap H.$$
It remains to find \(\text{Im } \nu_K \). We claim \(\text{Im } \nu_K = HK/H \). First of all, \(HK = KH \) is a subgroup of \(G \) because \(H \trianglelefteq G \) (Lemma 19.4(2)), and \(H \trianglelefteq HK \), so \(H \trianglelefteq HK \). So \(HK/H \) is meaningful. For any \(k \in K \), we have \(k \nu_K = Hk \in HK/H \), which shows that \(\text{Im } \nu_K \subseteq HK/H \). Conversely, each element of \(HK/H \) is of the form \(Hhk \), where \(h \in H, k \in K \). But \(Hhk = Hk = k \nu_K \in \text{Im } \nu_K \), so \(HK/H \subseteq \text{Im } \nu_K \). Thus \(\text{Im } \nu_K = HK/H \) and (\(^*\)) yields \(K/H \cap K \cong HK/H \) as was to be proved. \(\square \)

Exercises

1. Let \(A \trianglelefteq C \trianglelefteq G \) and \(B \trianglelefteq G \). Prove that \(A \cap B \trianglelefteq C \cap B \) and \(C \cap B / A \cap B \cong A(C \cap B)/A \).

2. Let \(A \trianglelefteq C \trianglelefteq G \), \(B \trianglelefteq G \) and let \(\varphi : G \to H \) be a group homomorphism. Prove that \(A\varphi \trianglelefteq C\varphi \). Choosing \(\varphi \) in particular to be the natural homomorphism \(\nu : G \to G/B \), prove that \(AB \trianglelefteq CB \).