Let E/K be a field extension and let $a \in E$ be algebraic over K. Then there is a nonzero polynomial f in $K[x]$ such that $f(a) = 0$. Hence the subset $A = \{ f' \in K[x]; f(a) = 0 \}$ of $K[x]$ does not consist only of 0. We observe that A is an ideal of $K[x]$, because A is the kernel of the substitution homomorphism $T_a : K[x] \to E$.

Thus A is an ideal of $K[x]$ and $A \neq \{0\}$. Since $K[x]$ is a principal ideal domain, $A = K[x]f_0 =: (f_0)$ for some nonzero polynomial f_0 in $K[x]$. For any polynomial $g \in K[x]$, the relation $(g) = A = (f_0)$ holds if and only if g and f_0 are associate in $K[x]$, that is to say, if and only if $g(x) = cf_0(x)$ for some c in K. There is a unique $c_0 \in K$ such that the leading coefficient of $c_0f_0(x)$ is equal to 1. With this c_0, we put $g_0(x) = c_0f_0(x)$. Then g_0 is the unique monic polynomial in $K[x]$ satisfying $(g_0) = A = \{ f' \in K[x]; f(a) = 0 \}$, and $f(a) = 0$ for a polynomial f in $K[x]$ if and only if g_0f in $K[x]$. In particular, we have $\deg g_0 \leq \deg f$ for any $f \in K[x]$ having a as a root.

In this way, we associate with $a \in E$ a unique monic polynomial g_0 in $K[x]$. This g_0 is the monic polynomial in $K[x]$ of least degree having a as a root. g_0 is irreducible over K: if there are polynomials $p(x), q(x)$ in $K[x]$ with $g_0(x) = p(x)q(x)$, $1 \leq \deg p(x) < \deg g_0(x)$ and $1 \leq \deg q(x) < \deg g_0(x)$, then $0 = g_0(a) = p(a)q(a)$ would imply $p(x) \in A$ or $q(x) \in A$, hence $g_0|p$ or $g_0|q$ in $K[x]$, which is impossible in view of the conditions on $\deg p(x)$ and $\deg q(x)$.

We proved the following theorem.

50.1 Theorem: Let E/K be a field extension and $a \in E$. If a is algebraic over K, then there is a unique nonzero monic polynomial $g(x)$ in $K[x]$ such that

\[\text{for all } f(x) \in K[x], \quad f(x) = 0 \text{ if and only if } g(x)f(x) \in K[x]. \]
In particular, \(a \) is a root of \(g(x) \) and \(g(x) \) has the smallest degree among the nonzero polynomials in \(K[x] \) admitting \(a \) as a root. Moreover, \(g(x) \) is irreducible over \(K \).

50.2 Definition: Let \(E/K \) be a field extension and let \(a \in E \) be algebraic over \(K \). The unique polynomial \(g(x) \) of Theorem 50.1 is called the minimal polynomial of \(a \) over \(K \).

The minimal polynomial of \(a \) over \(K \) is also called the irreducible polynomial of \(a \) over \(K \). Given an element \(a \) of \(E \), algebraic over \(K \), and a polynomial \(h(x) \) in \(K[x] \), in order to find out whether \(h(x) \) is the minimal polynomial of \(a \) over \(K \), it seems we had to check whether \(h(x) \) divides any polynomial \(f(x) \) in \(K[x] \) having \(a \) as a root. Fortunately, there is another characterization of minimal polynomials.

50.3 Theorem: Let \(E/K \) be a field extension and \(a \in E \). Assume that \(a \) is algebraic over \(K \). Let \(h(x) \) be a nonzero polynomial in \(K[x] \). If

\[
\begin{align*}
(i) & \ h(x) \text{ is monic}, \\
(ii) & \ a \text{ is a root of } h(x), \\
(iii) & \ h(x) \text{ is irreducible over } K,
\end{align*}
\]

then \(h(x) \) is the minimal polynomial of \(a \) over \(K \).

Proof: We must show only that \(h(x) \) divides any polynomial \(f(x) \in K[x] \) having \(a \) as a root. Let \(f(x) \) be a polynomial in \(K[x] \) and assume that \(a \) is a root of \(f(x) \). We divide \(f(x) \) by \(h(x) \) and get

\[
f(x) = q(x)h(x) + r(x), \quad r(x) = 0 \text{ or } \deg r(x) < \deg h(x)
\]

with suitable \(q(x), r(x) \in K[x] \). Substituting \(a \) for \(x \), we obtain

\[
0 = f(a) = q(a)h(a) + r(a) = q(a)0 + r(a) = r(a).
\]

If \(r(x) \) were distinct from the zero polynomial in \(K[x] \), then the irreducible polynomial \(h(x) \) would have a common root \(a \) with the polynomial \(r(x) \) whose degree is smaller than the degree of \(h(x) \). This is impossible by Theorem 35.18(4). Hence \(r(x) = 0 \) and \(f(x) = q(x)h(x) \). Therefore \(h(x) \) divides any polynomial \(f(x) \in K[x] \) having \(a \) as a root, as was to be proved. \(\square \)
50.4 Examples: (a) Let us find the minimal polynomial of \(i \in \mathbb{C} \) over \(\mathbb{R} \). Since \(i \) is a root of the polynomial \(x^2 + 1 \in \mathbb{R}[x] \), which is monic and irreducible over \(\mathbb{R} \), Theorem 50.3 tells us that \(x^2 + 1 \) is the minimal polynomial of \(i \) over \(\mathbb{R} \). In the same way, we see that \(x^2 + 1 \in \mathbb{Q}[x] \) is the minimal polynomial of \(i \) over \(\mathbb{Q} \). On the other hand, \(x^2 + 1 \in (\mathbb{Q}(i))[x] \) is not irreducible over \(\mathbb{Q}(i) \), because \(x^2 + 1 = (x - i)(x + i) \) in \((\mathbb{Q}(i))[x] \). Now \(x - i \) is a monic irreducible polynomial in \((\mathbb{Q}(i))[x] \) having \(i \) as a root, and thus \(x - i \) is the minimal polynomial of \(i \in \mathbb{C} \) over \(\mathbb{Q}(i) \).

(b) Let us find the minimal polynomial of \(u = \sqrt{2} + \sqrt{3} \in \mathbb{R} \) over \(\mathbb{Q} \). The calculations

\[
\begin{align*}
\sqrt{2} + \sqrt{3} & = u \\
\sqrt{2} - \sqrt{3} & = u - 2u^2 + 2 = 3
\end{align*}
\]

show that \(\sqrt{2} + \sqrt{3} \) is a root of the monic polynomial \(f(x) = x^4 - 10x^2 + 1 \) in \(\mathbb{Q}[x] \). We will prove that \(f(x) \) is irreducible over \(\mathbb{Q} \). Theorem 50.3 will then yield that \(f(x) \) is the minimal polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q} \).

In view of Lemma 34.11, it will be sufficient to show that \(f(x) \) is irreducible over \(\mathbb{Z} \). Since the numbers \(\pm 1/\pm 1 = \pm 1 \) are not roots of \(f(x) \), we learn from Theorem 35.10 (rational root theorem) that \(f(x) \) has no polynomial factor in \(\mathbb{Z}[x] \) of degree one. If there were a factorization in \(\mathbb{Z}[x] \) of \(f(x) \) into two polynomials of degree two, which we may assume to be

\[
x^4 - 10x^2 + 1 = (x^2 + ax + b)(x^2 + cx + d)
\]

without loss of generality, then the integers \(a, b, c, d \) would satisfy

\[
a + c = 0, \quad d + ac + b = -10, \quad ad + bc = 0, \quad bd = 1
\]

and this would force \(b = d = \pm 1 \) and the first two equations would give

\[
a + c = 0, \quad ac = -12 \quad \quad \text{or} \quad \quad a + c = 0, \quad ac = -8
\]

\[
a^2 = 12 \quad \quad \quad \text{or} \quad \quad a^2 = 8,
\]

whereas no integer has a square equal to 8 or 12. Thus \(f(x) \) is irreducible in \(\mathbb{Z}[x] \) and, as remarked earlier, \(f(x) \) is therefore the minimal polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q} \).
The irreducibility of \(f(x) \) of degree four over \(\mathbb{Q} \) could be proved by showing the irreducibility of another polynomial, of degree less than four, over a field larger than \(\mathbb{Q} \). As this gives a deeper insight to the problem at hand, we will discuss this method. The equation (u) states that \(\sqrt{2} + \sqrt{3} \) is a root of the polynomial \(f_2(x) = x^2 - 2\sqrt{2}x - 1 \in (\mathbb{Q}(\sqrt{2}))[x] \). Let \(g(x) \in (\mathbb{Q}(\sqrt{2}))[x] \) be the minimal polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q}(\sqrt{2}) \). Then \(g(x)|f_2(x) \) in \((\mathbb{Q}(\sqrt{2}))[x] \) and, if \(g(x) \not\equiv f_2(x) \), then \(\deg g(x) \) would be one and \(g(x) \) would be \(x - (\sqrt{2} + \sqrt{3}) \), since the latter is the unique monic polynomial of degree one having \(\sqrt{2} + \sqrt{3} \) as a root. But \(g(x) \in (\mathbb{Q}(\sqrt{2}))[x] \) and this would imply \(\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}) \), so \(\sqrt{3} \in \mathbb{Q}(\sqrt{2}) \), so \(\sqrt{3} = m + n\sqrt{2} \) with suitable \(m,n \in \mathbb{Q} \), where certainly \(m \neq 0 \neq n \), so \(3 = m^2 + 2\sqrt{2}mn + n^2 \), so \(\sqrt{2} = (3 - m^2 - 2n^2)/2mn \) would be a rational number, a contradiction. Thus \(f_2(x) = g(x) \) is the minimal polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q}(\sqrt{2}) \).

Now the irreducibility of \(f(x) \) over \(\mathbb{Q} \) follows very easily. \(f(x) \) has no factor of degree one in \(\mathbb{Q}[x] \). If \(f(x) \) had a factorization (e) in \(\mathbb{Q}[x] \), where \(a,b,c,d \) are rational numbers (not necessarily integers), then \(\sqrt{2} + \sqrt{3} \) would be a root of one of the factors on the right hand side of (e), say of \(x^2 + ax + b \). But then \(x^2 + ax + b \), being a polynomial in \((\mathbb{Q}(\sqrt{2}))[x] \) having \(\sqrt{2} + \sqrt{3} \) as a root, would be divisible, in \((\mathbb{Q}(\sqrt{2}))[x] \), by the minimal polynomial \(f_2(x) = x^2 - 2\sqrt{2}x - 1 \) of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q}(\sqrt{2}) \). Comparing degrees and leading coefficients, we would obtain \(x^2 - 2\sqrt{2}x - 1 = x^2 + ax + b \), so \(2\sqrt{2} = -a \in \mathbb{Q} \), a contradiction. Hence \(f(x) \) is irreducible over \(\mathbb{Q} \).

The next lemma crystalizes the argument employed in the last example.

50.5 Lemma: Let \(K_1 \subseteq K_2 \subseteq E \) be fields and \(a \in E \). If \(a \) is algebraic over \(K_1 \), then \(a \) is algebraic over \(K_2 \). Moreover, if \(f_1, f_2 \) are, respectively, the minimal polynomials of \(a \) over \(K_1 \) and \(K_2 \), then \(f_2|f_1 \) in \(K_2[x] \).

Proof: If \(a \) is algebraic over \(K_1 \) and \(f_1(x) \) is the minimal polynomial of \(a \) over \(K_1 \), then \(f_1(a) = 0 \). Since \(f_1(x) \in K_1[x] \subseteq K_2[x] \), we conclude that \(a \) is algebraic over \(K_2 \). Then, from \(f_1(a) = 0 \) and \(f_1(x) \in K_2[x] \), we obtain \(f_2(x)|f_1(x) \) in \(K_2[x] \) by the very definition of the minimal polynomial \(f_2(x) \) of \(a \) over \(K_2 \). □
We proceed to describe simple algebraic extensions. Let us recall that we found $\mathbb{Q}[i] = \mathbb{Q}(i)$. This situation obtains whenever we consider a simple extension generated by an algebraic element.

50.6 Theorem: Let E/K be a field extension and $a \in E$. Assume that a is algebraic over K and let f be its minimal polynomial over K. We denote by $K[a] = \langle f \rangle$ the principal ideal generated by f in $K[x]$. Then

$$K(a) = K[a] \cong K[x]/\langle f \rangle.$$

Proof: Consider the substitution homomorphism $T_a: K[x] \rightarrow E$. Here $\text{Ker } T_a = \{h \in K[x]: h(a) = 0\} = \langle f \rangle$ by Theorem 50.1 and $\text{Im } T_a = K[a]$ by Lemma 49.5(1). Hence $K[x]/\langle f \rangle = K[x]/\text{Ker } T_a \cong \text{Im } T_a = K[a]$.

It remains to show $K(a) = K[a]$. Since $K[a] \subseteq K(a)$, we must prove only $K(a) \subseteq K[a]$. To this end, we need only prove that $1/g(a) \in K[a]$ for any $g(x) \in K[x]$ with $g(a) \neq 0$ (Lemma 49.5). Indeed, if $g(x) \in K[x]$ and $g(a) \neq 0$, then $f \mid g$ and, since f is irreducible in $K[x]$, the polynomials $f(x)$ and $g(x)$ are relatively prime in $K[x]$ (Theorem 35.18(3)). Thus there are polynomials $r(x), s(x)$ in $K[x]$ such that

$$f(x)r(x) + g(x)s(x) = 1.$$

Substituting a for x and using $f(a) = 0$, we obtain $g(a)s(a) = 1$. Hence $1/g(a) = s(a) \in K[a]$. This proves $K[a] = K(a)$. (Another proof. Since $K[x]$ is a principal ideal domain and f is irreducible in $K[x]$, the factor ring $K[x]/\langle f \rangle$ is a field by Theorem 32.25; thus $K[a]$, being a ring isomorphic to the field $K[x]/\langle f \rangle$, is a subfield of E, and $K[a]$ contains K and a. So $K(a) \subseteq K[a]$ and $K(a) = K[a]$.)

50.7 Theorem: Let E/K be a field extension and $a \in E$. Suppose that a is algebraic over K and let f be its minimal polynomial over K. Then

$$|K(a):K| = \deg f$$

(the degree of the field $K(a)$ over K is the degree of the minimal polynomial f in $K[x]$). In fact, if $\deg f = n$, then \{1, a, a^2, \ldots, a^{n-1}\} is a K-basis of $K(a)$ and every element in $K(a)$ can be written in the form

$$k_0 + k_1 a + k_2 a^2 + \cdots + k_{n-1} a^{n-1} \quad (k_0, k_1, k_2, \ldots, k_{n-1} \in K)$$
Proof: We prove that \(\{1, a, a^2, \ldots, a^{n-1} \} \) is a \(K \)-basis of \(K(a) \). Let us show that it spans \(K(a) \) over \(K \). We know \(K(a) = K[a] \) from Theorem 50.6 and \(K[a] = \{ g(a) \in E : g \in K[x] \} \) from Lemma 49.5(1). Thus any element \(u \) of \(K(a) \) can be written as \(g(a) \), where \(g(x) \) is a suitable polynomial in \(K[x] \). Dividing this polynomial \(g(x) \) by \(f(x) \), which has degree \(n \), we get

\[
g(x) = q(x)f(x) + r(x), \quad r(x) = 0 \text{ or } \deg r(x) \leq n - 1
\]

with some polynomials \(q(x), r(x) \) in \(K[x] \). Substituting \(a \) for \(x \), we obtain

\[
u = g(a) = q(a)f(a) + r(a) = q(a)0 + r(a) = r(a).
\]

If, say, \(r(x) = k_0 + k_1 a + k_2 a^2 + \cdots + k_{n-1} a^{n-1} \), where \(k_0, k_1, k_2, \ldots, k_{n-1} \in K \), then

\[
u = k_0 + k_1 a + k_2 a^2 + \cdots + k_{n-1} a^{n-1}
\]

and thus \(\{1, a, a^2, \ldots, a^{n-1} \} \) spans \(K(a) \) over \(K \).

Now let us show that \(\{1, a, a^2, \ldots, a^{n-1} \} \) is linearly independent over \(K \). If \(k_0, k_1, k_2, \ldots, k_{n-1} \) are elements of \(K \) such that

\[
k_0 + k_1 a + k_2 a^2 + \cdots + k_{n-1} a^{n-1} = 0,
\]

then \(a \) is a root of the polynomial \(h(x) = k_0 + k_1 x + k_2 x^2 + \cdots + k_{n-1} x^{n-1} \) in \(K[x] \), so \(f(x)|h(x) \) by Theorem 50.1. Here \(h(x) \neq 0 \) would yield the contradiction \(n = \deg f \leq \deg h \leq n - 1 \). Therefore \(h(x) = 0 \), which means that \(k_0 = k_1 = k_2 = \cdots = k_{n-1} = 0 \). Hence \(\{1, a, a^2, \ldots, a^{n-1} \} \) is linearly independent over \(K \).

This proves \(\{1, a, a^2, \ldots, a^{n-1} \} \) is a \(K \)-basis of \(K(a) \). It follows that

\[
|K(a):K| = \dim_K K(a) = |\{1, a, a^2, \ldots, a^{n-1} \}| = n = \deg f(x)
\]

and, by Theorem 42.8, every element of \(K(a) \) can be written uniquely in the form

\[
k_0 + k_1 a + k_2 a^2 + \cdots + k_{n-1} a^{n-1}.
\]

\[\square\]

50.8 Definition: Let \(E/K \) be a field extension and \(a \in E \). Suppose \(a \) is algebraic over \(K \). Then the degree of its minimal polynomial over \(K \), which is also the degree of \(K(a) \) over \(K \), is called the degree of \(a \) over \(K \).
50.9 Examples: (a) The minimal polynomial of \(i \in \mathbb{C} \) over \(\mathbb{Q} \) is the polynomial \(x^2 + 1 \) in \(\mathbb{Q}[x] \) (Example 50.4(a)), and \(x^2 + 1 \) has degree 2. Thus \(i \in \mathbb{C} \) is (algebraic and) has defree 2 over \(\mathbb{Q} \). Likewise, the minimal polynomial of \(i \in \mathbb{C} \) over \(\mathbb{R} \) is \(x^2 + 1 \in \mathbb{R}[x] \) and \(i \) has degree 2 over \(\mathbb{R} \).

(b) The minimal polynomial of \(\sqrt{2} + \sqrt{3} \in \mathbb{R} \) over \(\mathbb{Q} \) was found to be \(x^4 - 10x^2 + 1 \in \mathbb{Q}[x] \) (Example 50.4(b)). Thus \(\sqrt{2} + \sqrt{3} \) has degree 4 over \(\mathbb{Q} \). This follows also from Theorem 50.7. In fact, the numbers 1, \(\sqrt{2} \) form a \(\mathbb{Q} \)-basis of the field \(\mathbb{Q}(\sqrt{2}) \), hence \(|\mathbb{Q}(\sqrt{2}):\mathbb{Q}| = 2 \). Observe that

\[x^2 - 2\sqrt{2}x + 1 \]

degree 2

\[x^2 - 2 \]

degree 2

\[\mathbb{Q}(\sqrt{2}) \]

\[\mathbb{Q}(\sqrt{2} + \sqrt{3}) \]

\[\mathbb{Q} \]

\[\sqrt{2} = -\frac{9}{2} (\sqrt{2} + \sqrt{3}) + \frac{1}{2} (\sqrt{2} + \sqrt{3})^3, \] so \(\sqrt{2} \notin \mathbb{Q}(\sqrt{2} + \sqrt{3}) \) and therefore \(\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3}) \). Thus \(\mathbb{Q}(\sqrt{2}) \) is an intermediate field of the extension \(\mathbb{Q}(\sqrt{2} + \sqrt{3})/\mathbb{Q} \). From Theorem 48.13, we infer that

\[4 = |\mathbb{Q}(\sqrt{2} + \sqrt{3}):\mathbb{Q}| = |\mathbb{Q}(\sqrt{2} + \sqrt{3}):\mathbb{Q}(\sqrt{2})| |\mathbb{Q}(\sqrt{2}):\mathbb{Q}| = |\mathbb{Q}(\sqrt{2} + \sqrt{3}):\mathbb{Q}(\sqrt{2})| 2 \]

\[|\mathbb{Q}(\sqrt{2} + \sqrt{3}):\mathbb{Q}(\sqrt{2})| = 2 \]

and \(\sqrt{2} + \sqrt{3} \) has degree 2 over \(\mathbb{Q}(\sqrt{2}) \).

(c) Since \(x^2 + 1 \in \mathbb{R}[x] \) is the minimal polynomial of \(i \in \mathbb{C} \) over \(\mathbb{R} \), Theorem 50.6 states that \(\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{R}(i) \). In the ring \(\mathbb{R}[x]/(x^2 + 1) \), we have the equality \(x^2 + \mathbb{R}[x](x^2 + 1) = -1 + \mathbb{R}[x](x^2 + 1) \), and calculations are carried out just as in the ring \(\mathbb{R}[x] \), but we replace \([x + \mathbb{R}[x](x^2 + 1)]^2 = x^2 + \mathbb{R}[x](x^2 + 1) \) by \(-1 + \mathbb{R}[x](x^2 + 1) \). In the same way, calculations are carried out in \(\mathbb{R}(i) = \mathbb{C} \) just as though \(i \) were an indeterminate over \(\mathbb{R} \), and we write -1 for \(i^2 \) wherever we see \(i^2 \). This is what the isomorphism \(\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{R}(i) = \mathbb{C} \) means.
Likewise, if E/K is a field extension and $a \in E$, and if a is algebraic over K with the minimal polynomial $x^n + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \cdots + c_1x + c_0$ over K so that
\[
a^n = -c_{n-1}a^{n-1} - c_{n-2}a^{n-2} - \cdots - c_1a - c_0,
\]
then $K(a)$ consists of the elements
\[
k_0 + k_1a + \cdots + k_{n-2}a^{n-2} + k_{n-1}a^{n-1} \quad (k_0, k_1, \ldots, k_{n-2}, k_{n-1} \in K)
\]
and computations are carried out in $K(a)$ just as though a were an indeterminate over K and then replacing a^n by $-c_{n-1}a^{n-1} - c_{n-2}a^{n-2} - \cdots - c_1a - c_0$ wherever it occurs.

For instance, writing a for $\sqrt{2} + \sqrt{3} \in \mathbb{R}$, we have $a^4 = 10a^2 - 1$ in $\mathbb{Q}(a)$. If $t = 2 + a - a^2 + 3a^3 \in \mathbb{Q}(a)$ and $u = a + a^2 + 2a^3 \in \mathbb{Q}(a)$, then
\[
t + u = 2 + 2a + 5a^3 \in \mathbb{Q}(a)
\]
and
\[
tu = (2 + a - a^2 + 3a^3)(a + a^2 + 2a^3)
= 2a + 2a^2 + 4a^3 + a^2 + a^3 + 2a^4 - a^3 - a^4 - 2a^5 + 3a^4 + 3a^5 + 6a^6
= 2a + 3a^2 + 4a^3 + 4a^4 + a^5 + 6a^6
= 2a + 3a^2 + 4a^3 + 4(10a^2 - 1) + a(10a^2 - 1) + 6a^2(10a^2 - 1)
= 2a + 3a^2 + 4a^3 + 40a^2 - 4 + 10a^3 - a + 60(10a^2 - 1) - 6a^2
= -64 + a + 637a^2 + 14a^3 \in \mathbb{Q}(a).
\]
Let us find the inverse of $a^2 + a + 1$. According to Theorem 50.6, we must find polynomials $r(x), s(x)$ in $\mathbb{Q}[x]$ such that
\[(x^4 - 10x^2 + 1)r(x) + (x^2 + x + 1)s(x) = 1\]
and this we do by the Euclidean algorithm:
\[
x^4 - 10x^2 + 1 = (x^2 - x - 10)(x^2 + x + 1) + (11x + 11)
\]
\[
x^2 + x + 1 = \left(\frac{1}{11}\right)(11x + 11) + 1,
\]
so that
\[
1 = (x^2 + x + 1) - \left(\frac{1}{11}\right)x(11x + 11)
= (x^2 + x + 1) - \left(\frac{1}{11}\right)x[(x^4 - 10x^2 + 1) - (x^2 - x - 10)(x^2 + x + 1)]
= (x^2 + x + 1)(1 + \left(\frac{1}{11}\right)x(x^2 - x - 10)) - \left(\frac{1}{11}\right)x(x^4 - 10x^2 + 1),
\]
and, substituting a for x, we get
\[
1 = (a^2 + a + 1)(\frac{1}{11}a^3 - \frac{1}{11}a^2 - \frac{10}{11}a + 1),
\]
611
Notice that \(a\) is treated here merely as a symbol that satisfies the relation \(a^4 - 10a^2 + 1 = 0\). The *numerical* value of \(a = \sqrt{2} + \sqrt{3} = 3.14626337\ldots\) as a real number is totally ignored. This is algebra, the calculus of symbols. This allows enormous flexibility: we can regard \(a\) as an element in *any* extension field \(E\) of \(\mathbb{Q}\) in which the polynomial \(x^4 - 10x^2 + 1\) has a root. This idea will be pursued in the next paragraph.

50.10 Theorem: Let \(E/K\) be a finite dimensional extension. Then \(E\) is algebraic over \(K\) and also finitely generated over \(K\).

Proof: Let \(|E:K| = n \in \mathbb{N}\). To prove that \(E\) is algebraic over \(K\), we must show that every element of \(a\) is a root of a nonzero polynomial in \(K[x]\). If \(u\) is an arbitrary element of \(E\), then the \(n+1\) elements \(1, u, u^2, \ldots, u^{n-1}, u^n\) of \(E\) cannot be linearly independent over \(K\), by Steinitz' replacement theorem. Thus there are \(k_0, k_1, k_2, \ldots, k_{n-1}, k_n\) in \(K\), not all of them zero, with

\[
k_0 + k_1 u + k_2 u^2 + \cdots + k_{n-1} u^{n-1} + k_n u^n = 0.
\]

Then \(g(x) = k_0 + k_1 x + k_2 x^2 + \cdots + k_{n-1} x^{n-1} + k_n x^n\) is a nonzero polynomial in \(K[x]\), in fact of degree \(\leq n\), and \(u\) is a root of \(g(x)\). Thus \(u\) is algebraic over \(K\). Since \(u\) was arbitrary, \(E\) is algebraic over \(K\).

Secondly, if \(\{b_1, b_2, \ldots, b_n\} \subseteq E\) is a \(K\)-basis of \(E\), then

\[
E = s_K(b_1, b_2, \ldots, b_n) = \{k_1 b_1 + k_2 b_2 + \cdots + k_n b_n\}
\]

\[
\subseteq \{f(b_1, b_2, \ldots, b_n) \in E : f \in K[x_1, x_2, \ldots, x_n]\}
\]

\[
= K(b_1, b_2, \ldots, b_n)
\]

\[
\subseteq E,
\]

thus \(E = K(b_1, b_2, \ldots, b_n)\) is finitely generated over \(K\). \(\square\)

As a separate lemma, we record the fact that the polynomial \(g(x)\) in the preceding proof has degree \(\leq n\).
50.11 Lemma: Let E/K be a field extension of degree $|E:K| = n \in \mathbb{N}$. Then every element of E is algebraic over K and has degree over K at most equal to n.

Next we show that an extension generated by algebraic elements is algebraic.

50.12 Theorem: Let E/K be a field extension and let a_1, a_2, \ldots, a_n be finitely many elements in E. Suppose that a_1, a_2, \ldots, a_n are algebraic over K. Then $K(a_1, a_2, \ldots, a_n)$ is an algebraic extension of K. In fact, $K(a_1, a_2, \ldots, a_n)$ is a finite dimensional extension of K and

$$|K(a_1, a_2, \ldots, a_n):K| \leq |K(a_1):K| |K(a_2):K| \cdots |K(a_n):K|$$

Proof: Let $r_1 = |K(a_1):K|$. For each $i = 2, \ldots, n - 1, n$, the element a_i is algebraic over K, hence also algebraic over $K(a_1, \ldots, a_{i-1})$ by Lemma 50.5. This lemma yields, in addition, that the minimal polynomial of a_i over the field $K(a_1, \ldots, a_{i-1})$ is a divisor of the minimal polynomial of a_i over K; so, comparing the degrees of these minimal polynomials and using Theorem 50.7, we get $r_i := |(K(a_1, \ldots, a_{i-1}))(a_i)| |K(a_1, \ldots, a_{i-1})| \leq |K(a_i):K|$, this for all $i = 2, \ldots, n - 1, n$. From

$$K \subseteq K(a_1) \subseteq K(a_1, a_2) \subseteq \cdots \subseteq K(a_1, a_2, \ldots, a_n) \subseteq K(a_1, a_2, \ldots, a_{n-1}, a_n)$$

and

$$K(a_1, \ldots, a_{i-1}, a_i) = (K(a_1, \ldots, a_{i-1}))(a_i) \quad \text{for } i = 2, \ldots, n - 1, n$$

(Lemma 49.6(2)), we obtain

$$|K(a_1, a_2, \ldots, a_{n-1}, a_n):K| = r_1 r_2 \cdots r_n$$

(Theorem 48.13)

$$\leq |K(a_n):K| |K(a_{n-1}):K| \cdots |K(a_2):K| |K(a_1):K|.$$
50.13 Lemma: Let E/K be a field extension and $a,b \in E$. If a and b are algebraic over K, then $a + b$, $a - b$, ab and a/b (in case $b \neq 0$) are algebraic over K.

Proof: If a and b are algebraic over K, then $K(a,b)$ is an algebraic extension of K by Theorem 50.12: every element of $K(a,b)$ is algebraic over K. Since $a + b$, $a - b$, ab and a/b are in $K(a,b)$, they are algebraic over K. □

50.14 Theorem: Let E/K be a field extension and let A be the set of all elements of E which are algebraic over K. Then A is a subfield of E (and an intermediate field of the extension E/K).

Proof: If $a,b \in A$, then a and b are algebraic over K, then $a + b$, $-b$, ab and $1/b$ (the last in case $b \neq 0$) are algebraic over K by Lemma 50.13 and so A is a subfield of E by Lemma 48.2. Since any element of K is algebraic over K (Example 49.8(a)), we have $K \subseteq A$. Thus A is an intermediate field of E/K.

□

50.15 Definition: Let E/K be a field extension and let A be the subfield of E in Theorem 50.14 consisting exactly of the elements of E which are algebraic over K. Then A is called the algebraic closure of K in E.

A is of course an algebraic extension of K. In fact, if $a \in E$, then a is algebraic over K if and only if $a \in A$; and if F is an intermediate field of E/K, then F is algebraic over K if and only if $F \subseteq A$.

The last theorem in this paragraph states that an algebraic extension of an algebraic extension is an algebraic extension, sometimes referred to as the transitivity of algebraic extensions.

50.16 Theorem: Let F,E,K be fields. If F is an algebraic extension of E and E is an algebraic extension of K, then F is an algebraic extension of K.
Proof: We must show that every element of \(F \) is algebraic over \(K \). Let \(u \in F \). Since \(F \) is algebraic over \(E \), its element \(u \) is algebraic over \(E \), and there is a polynomial \(f(x) \in E[x] \) with \(f(u) = 0 \), say
\[
f(x) = e_0 + e_1x + \cdots + e_nx^n.
\]
We put \(L = K(e_0, e_1, \ldots, e_n) \). Then clearly \(f(x) \in L[x] \). Since \(E \) is algebraic over \(K \), each of \(e_0, e_1, \ldots, e_n \) is algebraic over \(K \) and Theorem 50.12 tells us that \(L/K \) is finite dimensional. Also, since \(f(u) = 0 \) and \(f(x) \in L[x] \), we see that \(u \) is algebraic over \(L \) and Theorem 50.7 tells us that \(L(u)/L \) is finite dimensional. So \(|L(u):K| = |L(u):L||K(e_0, e_1, \ldots, e_n):K| \) is a finite number: \(L(u) \) is a finite dimensional extension of \(K \). By Theorem 50.10, \(L(u) \) is an algebraic extension of \(K \). So every element of \(L(u) \) is algebraic over \(K \). In particular, since \(u \in L(u) \), we see that \(u \) is algebraic over \(K \). Since \(u \) is an arbitrary element of \(F \), we conclude that \(F \) is an algebraic extension of \(K \).

\[\square\]

50.17 Definition: Let \(K \) and \(L \) be subfields of a field \(E \). The subfield of \(E \) generated by \(K \cup L \) over \(P \), where \(P \) is the prime subfield of \(E \), is called the compositum of \(K \) and \(L \), and denoted by \(KL \).

So \(KL = P(K \cup L) \) by definition. It follows immediately from this definition that \(KL = LK \). The compositum \(KL \) is the smallest subfield of \(E \) containing both \(K \) and \(L \), whence \(KL = K(L) = L(K) \).

In order to define the compositum of two fields \(K \) and \(L \), it is necessary that these be contained in a larger field. If \(K \) and \(L \) are not subfields of a common field, we cannot define the compositum \(KL \).

If \(E/K \) is a field extension and \(a, b \in E \), then the compositum \(K(a)K(b) \) of \(K(a) \) and \(K(b) \) is \(K(P \cup \{a, b\}) = K(a, b) \).

Exercises
1. Find the minimal polynomials of the following numbers over the fields indicated.

(a) $\sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$.
(b) $\sqrt{3} - \sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$.
(c) $\sqrt{2} + \sqrt{3} + \sqrt{5}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{2} + \sqrt{5})$.
(d) $\sqrt[3]{2} + \sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$.
(e) $\sqrt{2} + \sqrt{3}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$.
(f) $\sqrt{3} + \sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$.
(g) $\sqrt{-1} + \sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(i)$.
(h) $\sqrt{-1} - \sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(i)$.
(j) $\sqrt[3]{-1} + \sqrt{2} + \sqrt[3]{-1} - \sqrt{2}$ over \mathbb{Q}, $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(i)$.

2. Let E/K be an extension of fields and let D be an integral domain such that $K \subseteq D \subseteq E$. Prove that, if E is algebraic over K, then D is a field.

3. Let E/K be an extension of fields and a_1, a_2, \ldots, a_m elements of E which are algebraic over K. Prove that $K[a_1, a_2, \ldots, a_m] = K(a_1, a_2, \ldots, a_m)$.

4. Let E/K be a field extension and $a, b \in E$. If a is algebraic of degree m over K and b is algebraic of degree n over K, show that $K(a, b)$ is an algebraic extension of K and that $|K(a, b):K| \leq mn$. If, in addition, m and n are relatively prime, then in fact $|K(a, b):K| = mn$.

5. Let E/K be a field extension and L, M intermediate fields. Prove the following statements.

(a) $|LM:K|$ is finite if and only if both $|L:K|$ and $|M:K|$ are finite.
(b) If $|LM:K|$ is finite, then $|L:K|$ and $|M:K|$ divide $|LM:K|$.
(c) If $|L:K|$ and $|M:K|$ are finite and relatively prime, then $|LM:K|$ is equal to $|L:K||M:K|$.
(d) If L and M are algebraic over K, then LM is algebraic over K.
(e) If L is algebraic over K, then LM is algebraic over M.

6. A complex number u is said to be an algebraic integer if u is the root of a monic polynomial in $\mathbb{Z}[x]$. Prove the following statements.

(a) If $c \in \mathbb{C}$ is algebraic over \mathbb{Q}, then there is a natural number n such that nc is an algebraic integer.
(b) If $u \in \mathbb{Q}$ and u is an algebraic integer, then $u \in \mathbb{Z}$.
(c) Let \(f(x) \) and \(g(x) \) be monic polynomials in \(\mathbb{Q}[x] \). If \(f(x)g(x) \in \mathbb{Z}[x] \), then \(f(x) \) and \(g(x) \) are in \(\mathbb{Z}[x] \). (Hint: consider contents.)

(d) If \(u \in \mathbb{C} \) is an algebraic integer, then the minimal polynomial of \(u \) over \(\mathbb{Q} \) is in fact a polynomial in \(\mathbb{Z}[x] \).